教学内容
课本第22——23页,“想想做做”第5~10题。
教学目的
1.通过练习,使学生进一步理解和掌握万以内数的大小比较的方法,能正确比较万以内数的大小。
2.使学生在现实的情境中进行估计,进一步体会“多一些、少一些、多得多、少得多”的含义。提高学生解决实际问题的能力。
教学过程
一、揭示课题,并出示课题
二、比较数的大小的练习
1.说说下面各数的组成。
323 769 561 936
追问:它们分别是几百多?323比500要怎样?(少得多。),比100呢?(多得多。)
2.比一比下面各数的大小。
207 〇 307 657 〇 269 900 〇 1000
分别请学生们说说比较大小时的思考过程。
3.请学生们说说:你觉得如果遇到以上类似的情况,要如何比较呢?
三、综合练习
1.完成“想想做做”第5题。
(1)出示三个杯子,教师参照书中的图片,分别在杯中放入一些黄豆。
介绍:左边第一个杯里大约有200粒黄豆。(板书:大约)”大约”在这里是什么意思?
提问;你能猜出另外两个杯里大约各有多少粒黄豆吗?
(2)指名请学生们各抒己见,并同时说说自己估计的根据、理由。
(第二杯大约有400粒,第三杯大约有800粒。)
2.完成“想想做做”第6题。
(1)出示情境图,使学生明白题意。
提问:红红说的.“我的书比你的少很多”,指的是比多少少很多?
(比630少很多。)
比630少很多是什么意思?
(2)请学生们在合适的一栏内打勾。
指名说说选择“220页”的理由。
3.完成“想想做做”第7题。
(1)出示情境图,使学生明白题意。
提问:“差不多”是什么意思?题目让我们找与多少差不多的距离?
(2)学生独立完成,并说说理由。
(3)提问:你觉得445米与700米相比,要怎样?
引导学生说出:445米比700米近得多。
提问:那么950米与?700米,怎样呢
引导学生说出:950米比700米远得多。
(4)提问:通过比较,你觉得“远得多、近得多、差不多”么意思:
你能说出与700米相比,远一些的距离吗?近一些呢?(只要符合要求的数都可以。)
4.完成“想想做做”第8题。
(1)学生们独立思考回答问题。
(2)指名说说自己的看法。
(3)想一想:能不能试看用“快一些”、“快得多”来回答以上的问题呢?(摩托车比汽车快一些,摩托车比自行车快得多。)
5.完成“想想做做”第9题。
学生独立思考后,回答、交流。
6.小结。
通过刚才这几题的练习,我们应该明白:远得多、近得多、少得多、快一些、慢一些等等都是相对于某个数而言的,并不是独立的。
7.完成“想想做做”第10题。
(1)学生独立填写。
(2)反馈,指名说说自己填写的方法和策略。
(3)想一想:如何能—个也不少地按一定的规律来填写呢?
四、全课总结 (略)
板书: 比较数的大小的练习
远得多、近得多、少得多、快一些、慢一些等等都是相对于某个数而言的,并不是独立的。
一、选择题(每小题4分,共32分)
1.下列调查中,适宜采用全面调查方式的是( ).
A.了解南平市的空气质量情况
B.了解闽江流域的水污染情况
C.了解南平市居民的环保意识
D.了解全班同学每周体育锻炼的时间
2.为了了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是( ).
A.15000名学生是总体
B.1000名学生的视力是总体的一个样本
C.每名学生是总体的一个个体
D.15000名学生是个体
3.某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是( ).
A.从该地区随机选取一所中学里的学生
B.从该地区30所中学里随机选取800名学生
C.从该地区的一所高中和一所初中各选取一个年级的学生
D.从该地区的22所初中里随机选取400名学生
4.已知某校八年级500名学生的一次普法知识竞赛成绩,现在想知道每个分数段内的人数,需要做的统计工作是( ).
A.抽取样本,用样本估计总体
B.求平均成绩
C.进行分组,整理数据分布情况
D.找中位数与众数
5.已知某样本的方差是4,则这个样本的标准差是( ).
A.2B.±2C.4D.16
6.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( ).
7.已知一个样本,共100个数据,在频数分布直方图中各小长方形的高之比为1∶3∶4∶2,则下列说法错误的是( ).
A.频数最小的一组数据的个数是10
B.数据最多的一组的频率是4
C.最后一组的数据个数为20
D.第一组的频率是0.1
8.如果一组数据x1,x2,…,xn的方差是3,则另一组数据x1+5,x2+5,…,xn+5的方差是( ).
二、填空题(每小题4分,共20分)
9.一组数据:12,13,15,14,16,18,19,14,则这组数据的极差是__________.
10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
班级参赛人数中位数方差平均字数
甲55149191135
乙55151110135
某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是__________(把你认为正确结论的序号都填上).
11.某校组织了一次向玉树地震灾区学校的捐款活动,其中初三(1)班50名学生捐款情况如下表所示,则捐款数据中5(元)的频数与频率分别是__________.
捐款(元)14578910121650
人数13655315741
12.某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:
班级参加人数平均次数中位数方差
甲班45135149180
乙班45135151130
有下面三个命题:
①甲班平均成绩低于乙班平均成绩;
②甲班成绩的波动比乙班成绩的波动大;
③甲班成绩优秀人数少于乙班成绩优秀人数(跳绳次数≥150次为优秀).
其中正确的命题是__________.(只填序号)
13.九年级(1)班共50名同学,如图是该班结业体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是__________.
九年级(1)班50名同学体育模拟测
试成绩频数分布直方图
三、解答题(共48分)
14.(12分)下列调查中,分别采用了哪种调查方式?说说你的理由.
(1)检测某城市的空气质量;
(2)了解全国中学生的体重与饮食情况;
(3)企业招聘,对应聘人员进行面试;
(4)调查某大型养鱼池中现有鱼的数量.
15.(8分)为了了解全校学生的视力情况,小颖、小丽、小萍三个同学分别设计了一个方案:①小颖:检测出全班同学的视力,以此推算全校学生的视力情况;②小丽:在校医院发现了2002年全校各班的视力表,以此推算全校学生的视力情况;③小萍:在全校每个年级的'一班中,抽取学号为5的倍数的10名学生,记录他们的视力情况,从而估计全校学生的视力情况.这三种做法哪一种比较好?为什么?从这个事例中你体会到想得到比较准确的估计结果,在收集数据时要注意些什么?
16.(14分)某市为严禁酒后驾驶与超速行驶,切实保障交通安全,加强了各项交通督查力度.某次将雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):
数据段频数频率
30~40100.05
40~5036
50~600.39
60~70
70~80200.10
总计1
注:30~40为时速大于等于30千米而小于40千米,其他类同.
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
17.(14分)为了从甲、乙两名同学中选拔一人参加射击比赛,在同等的条件下,教练给甲、乙两名同学安排了一次射击测验,每人打10发子弹,下面是甲、乙两人各自的射击情况记录(其中乙的情况记录表上射中9环、10环的子弹数被墨水污染看不清楚,但是教练记得乙射中9环、10环的子弹数均不为0发):
中靶环数568910
射中此环的子弹数(单位:发)41221
中靶环数567910
射中此环的子弹数(单位:发)313
(1)求甲同学在这次测验中平均每次射中的环数;
(2)根据这次测验的情况,如果你是教练,你认为选谁参加比赛比较合适,并说明理由(结果保留到小数点后第1位).
教学目标:使同学理解和掌握真分数,假分数的意义和特征,学会把假分数化成整数.
教学重点:真分数和假分数的特征.
教学难点:等于1的假分数.
教学课型:新授课
教具准备:课件
教学过程:
一,激发兴趣,引出概念
1,真分数和假分数的意义和特征
(1)观察比较下列每个分数中分子,分母的大小,并试着按一定的原则把这些分数分组.[课件1]
1/3 3/3 3/4 1/5 5/6 2/5 3/5
4/5 5/5 7/4 9/5 10/5 11/5 15/5
① 板述:分子比分母小的分数叫做真分数.
分子比分母大或者分子和分母相等的分数,叫做假分数.
※ 请说出3个真分数,3个假分数.
② 观察比较:A,说一说第二组中的两个分数的意义 这样的分数等于多少
B,再请观察第一,三组的分数的分子与分母的大小关系,分数值
与1的关系,你发现有没有规律
板书:真分数小于1;假分数等于或大于1.
(2)在下面的线段图上,哪一段上的点表示的是真分数 哪一段上的点表示的是假分数 [课件2]
(3)揭示课题:
由图上可以清楚地看到,真分数,假分数实际上是以1为界,把分数分为了两类.所以这节课我们看上去研究的是分数的分子和分母的大小关系,而实质却是真分数和假分数.
板书课题:真分数和假分数的意义和特征
※ ① 下面分数中哪些是真分数 哪些是假分数 [课件3]
1/3 3/3 5/3 1/6 6/6 7/6 13/6
② 把上一题中的分数用直线上的点表示出来,看一看表示真分数的点和表示假分数的点,分别在直线的哪一段上.[课件4]
2,把假分数化成整数.
观察下列分数,它们有没有一起的特点 [课件5]
3/3 5/5 10/5 15/5
提问:A,这些假分数还可以用什么数来表示
B,我们可以用什么方法把它们化成整数 这样计算的依据是什么
(分子除以分母,分数与除法的关系.)
(2)教学P99 .例 3 : 把3/3,8/4化成整数.
板书: 3/3=33=1 提问:A,33表示什么
8/4=84=2 B,84表示什么
C,说一说怎样把假分数化为整数
(3)练习:把8/2,9/3,4/4,12/6化成整数. [课件6]
二,巩固练习,提高能力
1,说出四个分母是7的真分数.
2,说出3个分数值是1的`假分数.
3,说出两个分母是9,分数值比1大又比2小的假分数.
4,把下面这些分数化为整数.[课件7]
24/4 25/5 72/4 54/6 100/25
5,判断正误,并说明理由.[课件8]
(1)分母比分子大的分数是真分数. (2)假分数的分子比分母大. 6,分数a/b中,当a,b分别是什么数时,它为真分数 什么数时,它为假分数
三,全课总结,笼统概括
提问:怎样将真分数,假分数,假分数化整数
四,家作
P 101 .1,2,3
板书设计: 真分数和假分数的意义和特征
分子比分母小的分数叫做真分数.例:1/2,3/5,11/12 真分数1
分子比分母大或者分子和分母相等的分数,叫做假分数.例:5/3,8/8
假分数≥1.
把假分数化成带分数
教学目标:使同学理解和掌握带分数的意义和特征,掌握把假分数化成带分数的方法,并能正确地把假分数化成带分数.
教学重点:理解和掌握带分数的意义和特征,能正确地把假分数化成带分数.
教学难点:学会正确地把假分数化成带分数.
教学课型:新授课
教具准备:课件
教学过程:
一,复习引入,做好铺垫.
1,下面的分数中哪些是真分数 哪些是假分数 [课件1]
3/4 8/5 7/7 11/18 36/12 51/17 19/14 50/50
2,把下面的假分数化成整数.[课件2]
6/6 25/5 45/15 67/67 65/13
3,下面的假分数哪些能化成整数 哪些不能 [课件3]
16/4 9/2 18/18 23/7 35/12
4,揭示课题.
述:通过复习大家知道,当假分数的分子是分母的倍数时,能把假分数化成整数;但当假分数的分子不是分母的倍数时,不能把假分数化成整数.那么,这样的假分数又能用什么数来表示它们呢
板书课题:把假分数化成带分数
二,合作交流,探究新知
1,教学带分数的概念.
(1)分析:A,9/2可否看作是8/2和1/2合成的数 8/2化成整数是多少 那么,9/2是否可以写成4
B,4 中4是什么数 1/2是什么数
C,23/7可否看作是21/7和2/7合成的数呢 21/7化成整数是多少 那么,23/7是否可以写成3
D,3 中3是什么数 2/7是什么数
观察讨论:从上面的分析中,我们发现:假分数的分子不是分母的倍数
的,可以用什么数来表示它们
归纳:假分数的分子不是分母的倍数的,可以写成整数和真分数合成的
数,通常叫做带分数.它是一局部假分数的另一种书写形式.
2,介绍带分数各局部的名称和读法.
板书: 4
读作:四又二分之一
整数局部 分数局部
3,教学把假分数化成带分数的方法.
述:用上面实例中的方法化带分数比较麻烦,下面向同学们介绍一种简便方法.
(1)教学P100 .例 4 : 把6/5,8/3化成带分数
考虑:能不能根据分数与除法的关系,通过计算来改写呢
板书: 6/5=6÷5=1 8/3=8÷3=2
※ 下面的假分数哪些可以化成带分数 把它们化成带分数.[课件4]
7/3 8/2 15/5 9/4 13/13 11/6 30/11
(2)总结假分数化成整数或者带分数的方法.
提问:A,通过上例的学习谁能说说把假分数化成带分数的方法
板述:把假分数化成带分数,用分母去除分子,得到的商作带分数的整数局部,余数作带分数分数局部的分子,分母不变.
B,比较把假分数化成整数和把假分数化成带分数的方法什么一起点和不
(一起点:都是用分母去除分子.不同点:商不同.一种无
余数,可以写成整数;一种有余数,可以写成带分数.)
三,巩固练习,提高能力
1,P100 .做一做
2,P101 .4
3,口答:3 的分数单位是( ),它有( )个这样的分数单位.
4,P102 .6
5,P102 .7
6,P102 .8
7,P102 .9
四,全课总结,深化概念
提问:A,什么是真分数 什么是假分数
B,把假分数化成整数和带分数的条件和方法是什么
强调:带分数只是分子不是分母的倍数的假分数的另一种书写形式.
五,家作
P102 .10,11,考虑题
板书设计: 把假分数化成带分数
当假分数的分子不是分母的倍数的,可以写成整数
2/9=4 和真分数合成的数,通常叫做带分数.
带分数是一局部假分数的另一种书写形式.
把整数或带分数化成假分数
教学目标:使同学学会把整数或带分数化成假分数的方法,并能正确地把整数或带分数化成假分数.
教学重点:熟练地进行整数或带分数化成假分数.
教学难点:能进行知识运用,培养实践能力
教学课型:新授课
教具准备:课件
教学过程:
一,复习铺垫,准备迁移
1,用分数的意义说明下列分数,以和每个分数的分母,分子和分数单位.[课件1]
3/4 2/2 1/6 5/5 7/7 8/23
2,在括号里填上适当的数.[课件2]
2个1/3是( )/( ) 6个1/6是( )/( )
8个1/8是( )/( ) l4个1/2是( )/( )
18个1/5是( )分之( ) 17个1/4是( )/( )
二,探究新知,激发思维
1,教学P103 .例 5: 把1化成分母分别是2,3,4,5,…的分数.
提问:A,说说图意是什么 你有没有反对的意见
板书: 1=2/2=3/3=4/4=5/5=……
B,其它整数能不能化成分母是任意非0自然数的假分数呢
2,教学P103 .例 6: 把2和5分别化成分母是3的假分数.
(1)同桌相互说说怎样把2和5化成分母是4的分数.
(2)集体说说怎样把一个整数化成指定分母的分数
(3)小结:把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子.
※ 把1,2,5化成分母是1的假分数.
3,教学P104 .例 7: 把2 化成分母是5的假分数.
(1)提问:A,谁能说说假分数是怎样化成带分数的
B,那么,由此和彼,怎样把带分数化成假分数呢
(2)板书: 2 =5×2+4/5=14/5
(3)小结:把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子.
※ P104 .做一做1,2
三,总结反馈,巩固提高
1,总结:今天我们学习的内容是什么
2,P105 .1,3
四,家作
P105 .2
板书设计: 把整数或带分数化成假分数
P103 .例 5 1=2/2=3/3=4/4=5/5=…… 把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子.
P103 .例 6 把2和5分别化成分母是3的假分数.
把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子.
整数,假分数和带分数的互化练习
教学目标:使同学加深理解真分数和假分数的意义;能够比较熟练的进行假分数与带分数,整数的互化.
教学重点:加深理解真分数和假分数的意义.
教学难点:综合运用所学知识.
教学课型:练习课
教具准备:课件
教学过程:
一,基本练习
1,判断下列分数哪些是真,假,带分数 [课件1]
2/3 8/5 13/24 35/2 23/18 156/7
2,把下面的假分数化成整数或带分数.[课件2]
36/18 12/5 24/4 48/15 64/16 50/29
3,用分数表示商,能化成带分数的化成带分数.[课件3]
15÷16 35÷18 27÷29 132÷35
4,把下面的分数依照从大到小的顺序排列起来.[课件4]
2 7/8 3 26/7 31/7 22/8 25/9
5,填数.[课件5]
3=( )/8 7=( )/1 6=( )/12=18/( )
9=( )/8 5=( )/7 4=4/( )=24/( )
6,把下面的带分数化成假分数.[课件6]
2 4 8 7 12
二,综合练习
1,P105 .4
2,P105 .5
弄清楚0~1;1~2;2~3……都被平均分成了四份.
3,P106 .8
(1)提问:题中是要把什么数化成什么数
(2)板述:把整数或带分数化成分数局部是假分数的带分数,必需从整数中或原带分数的整数局部拿出1来进行改写.
4,P106 .11
提问:依题目要求,想想首先应确定哪个分数 为什么
三,全课总结,深化认识
今天我们学了什么知识 对于分数的知识你还想掌握些什么
四,家作
P106 .6,7,9,10
板书设计: 整数,假分数和带分数的互化练习
把整数或带分数化成分数局部是假分数的带分数,必需从整数中或原带分数的整数局部拿出1来进行改写.
3,分数的基本性质