励志一生网 > 名言警句 > 数学家对数学家高斯的名言 正文

数学家对数学家高斯的名言

时间:2024-11-13 21:39:37

约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日),德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日),德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

数学成就

高斯已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。

这些关於数论的工作对代数数的现代算术理论(即代数方程的解法)作出了贡献。高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。1831年(发表於1832年)他给出了一个如何藉助於x,y平面上的表示来发展精确的复数理论的详尽说明。

高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。

伟人之死

1849年举办了高斯获博士学位50周年庆祝会,为此高斯准备了他早期对代数基本定理证明的一个新版本。由于健康状况愈来愈差,这成了他最后的著作。给他带来最大欢乐和荣誉的还是哥廷根市赠与他的荣誉公民头衔。由于他在数学、天文学、大地测量学和物理学中的杰出研究成就,他被选为许多科学院和学术团体的成员。他谢绝了许多大学请他当教授的邀请而一直留在哥廷根大学的院系中,直至1855年2月23日逝世。逝世后不久就铸造了纪念他的钱币。

人物评价

高斯不仅对纯粹数学作出了意义深远的贡献,而且对20世纪的天文学、大地测量学和电磁学的实际应用也作出了重要的贡献。

高斯开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。

如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

高斯是"人类的`骄傲"。天才、早熟、高产、创造力不衰……人类智力领域的几乎所有褒奖之词,对于高斯都不过分。

爱因斯坦曾评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

贝尔曾经这样评论高斯:在高斯死后,人们才知道他早就预见一些十九世纪的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能比当今数学还要先进半个世纪或更多的时间。

人物名言

1、宁可少些,但要好些。二分之一个证明等于0。

2、无穷大只是一个比喻,意思是指这样一个极限:当允许某些比率无限地增加时,另一些特定比率可以相应地无限逼近这个极限,要多近有多近。

3、数学是科学之王。

4、如阿基米德、牛顿与高斯这样的最伟大的数学家,总是不偏不倚地把理论与应用结合起来。

5、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。

6、数学,科学的皇后;数论,数学的皇后。

7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王。

我们在学习数学的时候,老师偶尔会说一些关于数学家的故事,那么你们知道数学家高斯说的名言是什么吗?下文内容为你解答!

数学家高斯名言

数学是科学的女王,而数论是数学的女王。——高斯

【拓展阅读】

约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有"数学王子"之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字"高斯"命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

人物生平

家庭背景

高斯是一对贫穷普鲁士犹太人夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。高斯很幸运地有一位鼎力支持他成才的母亲。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。

若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

罗捷雅真的希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

初显天分

高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。

高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。"高斯非常坚定,说出答案就是5050。高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。

布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。"接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

得到资助

1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。他的`教师们和慈母把他推荐给伯伦瑞克公爵,希望公爵能资助这位聪明的孩子上学。

布伦兹维克公爵卡尔·威廉·斐迪南召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。

1796年高斯19岁,发现了正十七边形的尺规作图法,[1] 解决了自欧几里德以来悬而未决的一个难题。[1] 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为"黄金律" 。

1799年,高斯完成了博士

公爵继续慷慨资助高斯的研究,使得他能在1803年谢绝圣彼得堡提供的教授职位,他一直是圣彼得堡科学院通讯院士。

公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

直面变故

1806年,卡尔·威廉·斐迪南公爵在抵抗拿破仑统帅的法军时不幸在耶拿战役阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷。

但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手稿中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年莱昂哈德·欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。

为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥廷根大学数学和天文学教授,以及哥廷根天文台台长的职位。1807年,高斯赴哥廷根就职,全家迁居于此。

从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥廷根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥廷根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

拉普拉斯说:“在数学中,我们发现真理的主要工具是归纳和模拟”

维特根斯坦说:“数学是各式各样的证明技巧”

华罗庚说:“新的数学方法和概念,常常比解决数学问题本身更重要”

纳皮尔说:“我总是尽我的精力和才能来摆脱那种繁重而单调的计算”

开普勒说:“以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者”

拿破仑说:“一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的`发展和至善和国家繁荣昌盛密切相关”

爱因斯坦说:“数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。…。数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。”

邱成桐说:“现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量”

伦琴说:“第一是数学,第二是数学,第三是数学”

华罗庚说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”

冯纽曼说:“数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。”

皮娄(加拿大生物学家)说: “生态学本质上是一门数学”

开普勒说:“数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的”

傅立叶说:“数学主要的目标是公众的利益和自然现象的解释”

罗巴切夫斯基说:“不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上”

莱布尼兹说:“用一,从无,可生万物”

亚里士多德说:“思维自疑问和惊奇开始”

努瓦列斯说:“数学家本质上是个着迷者,不迷就没有数学”

柯普宁(前苏联哲学家)说:“当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐”

罗素说:“在数学中最令我欣喜的,是那些能够被证明的东西”

高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登”

波利亚说:“从最简单的做起”

高斯说:“宁可少些,但要好些” “二分之一个证明等于0”

希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。”