本节课从学生已有的知识基础出发,再现历史上数学家卡当的问题,让学生经历与数学大师一起发现问题、思考问题、解决问题的过程,感受到数学家就在自己的身边,数学大师并不神秘,他们也曾有解不开的难题,小小的“i”硬是经过了两个世纪的努力才被人接受;数学发现并不神秘,大师们通常是在别人习以为常的现象中发现新问题并穷追不舍;数学并不神秘,只要我们“更新观念”,跳出原有的旧框框,一片更为广阔的数学天地便尽收眼底……数学的文化内涵在历史的脉络中体现的淋漓至尽,学生感受的是浓浓的数学文化气息.
1.设计思路
根据学生已有的认知基础,预测学生在学习本节内容可能产生的认知障碍与学习困难:为什么要引入i?如何引入?i是什么?为此,本节主要采用问题驱动教学模式.通过设置问题串,让学生形成认知冲突;通过设置问题串,引领学生追溯历史,提炼数系扩充的原则;通过设置问题串,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中,教师仅起到“助产士”的作用.
2.教学流程
从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动.在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质.基于这一理论,我把这一节课的教学程序分成以下几个环节来进行:创设情境→建构知识→知识运用→归纳总结→作业布置→课后探究。
3.可取之处
(1)重视问题的设置。无论是课题的提示,还是知识的生成、规律的总结,都能以一个个的问题为切入点,设置好适当的梯度,让学生在体验成功中提升能力。
(2)注重数学的人文价值。本节课一开始并未直接给出虚数的定义,再用机械重复的运算去巩固知识,而是通过对数系扩充过程的.回顾,让学生感受人类理性思维在数学发展中作用,认识到数学发展既有来自外部的实际需求也有来自数学内部的逻辑规律,帮助学生更好地体会数学理论产生与发展的过程,形成正确的数学观。
4.待改进之处
(1)问题设置不够生动。如何使问题更能激发学生的课堂积极性。
(2)培养学生的学习能力,特别是自主学习的能力,做得不够。课前我已经准备了一些数学发展史的材料,这些材料如果能让学生自己去搜集,那么学生对这一部分知识会有更深刻的了解,但迫于平时自主学习的时间较少,扼杀了学生的能力。
总之,学生学习的不仅仅是记忆形式上的数学知识,更重要的是要领会以数学知识为载体的数学思想方法等.通过对数的发展历史的研究,可以把握数学知识、思想、方法的来龙去脉,这无疑有助于学生以后的学习与发展
教材分析:
《数系的扩充和复数的引入》是北师大版普通高中课程标准实验教科书选修2-2的第五章第一节的内容,主要包括数的概念的扩充,复数的相关概念。复数的引入是中学阶段数系的又一次扩充,引入复数以后,不仅可以使学生对于数的概念有一个更为完整的认识,也为进一步学习打下基础。通过本节课的学习,要使学生了解熟悉扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
教学目标:
1. 知识与技能:使学生体会数的概念是逐步发展的;了解引进复数的必要性;理解复数的基本概念。
2. 过程与方法:经历数的概念的发展和数系扩充的过程,体会数学发现和创造的过程,以及数学发生、发展的客观需求;
3. 情感、态度与价值观:通过对复数的学习,体会实际需求与数学内部的矛盾在数系扩充中的作用;通过数系的扩充历程,使学生体会数学博大精深的文化魅力,激发学生学习数学的兴趣;培养学生勇于知疑问难,善于探索的学习习惯和良好的思维品质
教学重点:
复数的概念。
教学难点:
虚数单位i的引入及复数的概念
教学过程:
【情景导入】
通过人类生产生活的需要及数学内部矛盾的解决需要这两条线索,回顾数的扩充脉络,引入新的问题:在实数集中求方程x2+1=0 的解?启发学生类比前三次数系扩充的问题的解决,得到要解决这个问题可以引入一个新的数。
设计意图:采用观看视频的方式进行情景导入,紧扣主题,通过梳理数系的扩充历程,使学生体会熟悉扩充的必要性,了解熟悉扩充前后的联系,为后面的学习做好铺垫。
【概念形成】
1、我们引入新数i,叫做“虚数单位”,并规定:
(1)i2=-1;
(2)实数可以与i进行四则运算,进行四则运算时,原有的加法运算律、乘法运算律仍然成立.
2、复数的定义
形如a+bi(a,b∈R)的数称为复数,通常表示为Z= a+bi(a,b∈R)其中a叫做复数的实部,b叫做复数的虚部.i称为虚数单位。
全体复数组成的集合叫复数集,通常用C表示。
设计意图:通过问题的提出、发展、解决的过程,让学生感受由实数系扩充到复数系的历程,体会数学家的创新精神和实践能力,让学生参与其中,培养学生解决问题的能力。
【自主学习】
阅读教材第99页倒数三段内容,完成下面的问题:
问题1:复数是怎样分类的.?
对于复数 ,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
问题2:复数集与数集N、Z、Q、R之间有什么关系?你能否用韦恩图表示?
复数集与其它数集之间的关系:
设计意图:让学生通过阅读、思考的方式获得知识,培养学生积极参与的意识和自主探索的能力。
【合作探究】
例1:完成下列表格(分类一栏填实数、虚数或纯虚数)
2-3i
例2:实数m取什么值时,复数z=(m-2)+(m+1)i 是
(1)实数;(2)虚数;(3)纯虚数。
变式练习:实数m取什么值时,复数z(m-2)(m-1)+(m-1)(m-3)i 是纯虚数?
设计意图:通过例题,强化学生对复数概念的理解,提高学生分析问题、解决问题的能力,规范做题步骤。
【课堂练习】
1、以 3i-2 的虚部为实部,以-3+3i 的实部为虚部的复数是
2、若复数(m-1)+(m+2)(m-1)i 是纯虚数,则实数m 的
值为 。
设计意图:及时反馈,学以致用,加深学生对知识的理解,提高学生的解题能力。
【课时小结】
这节课你都学到了什么?有哪些收获?
设计意图:通过学生总结,教师归纳,培养学生归纳概括的能力,回顾本节课内容,为后面的学习打下基础。
【课后作业】
1、书面作业:习题5-1 A组1
2、预习《 1.2复数的有关概念》
3、课后探究:请你查阅、收集一些关于实数集扩充到复数集的数学史料,并根据自己的理解对数系的扩充进行整理,写成一篇关于数系扩充历程的文章。
设计意图:巩固本节课所学知识,同时带着新的问题走出课堂,扩大学生的视野,感受数学文化的魅力,体会数学来源于生活,服务于生活。